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An Adjoint Variable Method for Design Sensitivity Analysis of 
Elastoplastic Structures 
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Design sensitivity analysis of structural problems obeying an elastoplastic material behavior 
is developed using adjoint variable method. An elastoplastic constitutive equation with yield 
surface and kinematic hardening is considered to describe the material behavior. The traditional 
incremental procedure and its design variation need special treatments in order to predict the 
discontinuity of the structural response sensitivity because the contribution from the design 
sensitivity at the material transition point is lost during the calculation. In this study, discontinu- 
ities of the design variations at the material transition points are alleviated in the adjoint 
variable method. Analytical and numerical examples are used not only to demonstrate the 
developed sensitivity procedure but also to gain insights of numerical implementation for the 
design sensitivity analysis of the elastoplastic structure based on the adjoint variable method. 
The comparisons between adjoint variable and direct variation methods are also discussed. 
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1. Introduct ion 

Design sensitivity coefficients are necessary in 
various fields such as the optimal design process, 
reliability analysis, probabilistic analysis, and the 
determination of relative importance of design 
variables(Kamart, 1993). Improved design can be 
achieved systematically by an engineer using the 
design sensitivity information, Because of the 
extension of the material usage from the elastic 
regime to the plastic regime, the discontinuous 
material behavior of the elastoplasticity becomes 
a significant consideration in design and analysis 
lbr practical applications. 

In many practical applications, a piecewise 
linear continuous model approximates the elasto- 
plastic constitutive law. For such a model, the 
design sensitivity coefficients are discontinuous at 
the material transition points that are located on 
the yield surface. Therefore the design sensitivity 
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analysis (DSA) of elastoplastic structures is clas- 
sified into discontinuous problem(Lee and Arora, 
19951). The traditional incremental procedure and 
its design variation reveal difficulties in estimat- 
ing the discontinuity of the structural response 
sensitivity at the material transition points 
because the contribution from the design sensitiw 
ity is lost during the calculation. DSA of elasto- 
plastic structures has been carefully treated by 
using incremental form of direct variation method 
(DVM), where high computational accuracy of 
the displacement at the material transition points 
is necessary(Vidal and Haber, 1993 ; Ohsaki; and 
Arora, 1994; Ohsaki, 1997). Another DVM of 
elastoplastic structures overcoming the disconti- 
nuities at the material transition points was 
proposed by taking design variation of the 
response variables at a load level instead of their 
increments(Lee and Arora, 1995). DSA based on 
the so-called virtual distortion method with in 
-elastic and elastoplastic truss structure is present- 
ed recently(Kolakowski and Holnicki-Szulc, 
1998). 

When the dimensions of the design variables 
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are larger than the numbers of  response functions 

whose design sensitivity analysis is desired, the 

so-called adjoint variable method (AVM) is 

more efficient than DVM(Eaug et al., 1986). 

Therefore the purpose of this study is to develop 

AVM of DSA for an elastoplastic structure. The 

continuum formulations tbr the response and 

sensitivity analyses of a structural problem are 

used where only material nonlinearity is consid- 

ered. The response analysis is performed using an 

incremental procedure that gives increments in 

the response variables. This is another way of  

overcoming the discontinuities in the design vari- 

ations of the response variables at the material 

transition points of the elastoplastic structures. 

Since the adjoint equation derived here is non- 

linear, an iteration process is necessary in the 

numerical calculation of adjoint variables or the 

tangent stiffness needs to be updated at each load 

step. An analytic example is illustrated to verity 

the developed theory and provide insights for 

implementation of the developed theory into com- 

puter programs. To show the nmnerical imple- 

mentation of the developed method, an asym- 

metric three-bar  truss structure is illustrated. 

Based on the experiences through this study, 

concluding remarks are fbllowed. 

2. Definit ion of  Problem 

Fig. I 

O" 

. . . . . .  e 

Uniaxial stress-strain relationship of an elas- 
toplastic material. 

_ t  ~ (%) (2) C U  I C ~ i  

where C~jk~ denotes the Young's modulus of 

elasticity of a continuum. Note that a repeated 

index represents the summation convention over 

its range. A uniaxial constitutive equation of the 

rate-independent plasticity as shown in Fig. l is 

given as 

t P / A  - ar 
t F = l ~ a - c / e P l - a Y ;  ~e t'= c K H C F )  

l 
- E + c K  ( E ' e -  aY) H (tF) (3) 

where tF,  H (x) ,  ar and cK denote the func- 

tion of yielding point, the Heaviside unit step 

fimction, the size of the yield surface, and the 

kinematic hardening constant,, respectively. It is 

noted that only the kinematic hardening is consid- 

ered in this study. 

2.1 Constitutive equation 
Stress-strain relation of an elastoplastic model 

is often constructed on the basis of  the yield 

criterion. In addition, many clastoplastic models 

use the Fundamental assumption that the infinites- 

imal strain at load level t can be decomposed into 

elastic and plastic component as(Khan and 

Huang, 1995) 

I (~us+~uj~)  . . . . .  ,J e;j 

where the right superscripts e and p indicate 

elastic and plastic parts, respectively, and ~u is the 

displacement field at load level t. The Cauchy 

slress can be determined using the generalized 

Hooke's law as 

2.2 Equilibrium equation 
The virtual work equation governing the equi- 

l ibrium state of a continuum body at load level t 

is given as 

ftaije,~(3'u) dV-- f ~'u~dV 
§ f'T?atu,dl',,, Jbr V6tu~ c U ( V ) ,  

I 

~u,.=tu ~ on l'~ and 

ta,Jnj=tT(~ on FT (4) 

where e , j ( $ t u ) - - 3 t e ~  and U ( V )  denotes a 

space of kinematically admissible displacements. 

Since Eq. (4) is nonlinear, incremental formula- 

tion of Eq. (4) is used to obtain a linearized 

equilibrium equation(Bathe, 1996) as 

f a,je~(~u) dV= ff,:~u~dV 
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t "  
+ JT,!'SuMFr for V S~u~ ~ U ( V ) ,  

u~=u~ onF~ and 
aJn~= T ~ onFz. (5) 

a,s = C,~, ( e ~ -  e~z); 'u~ =~ ~u~ + u~; 

tT?='-~T~ T~ (6) 

where  l~ti, (~ij, fi, e~j(u), and T o represent 

increments in the corresponding state fields. Now 
the linearized incremental equilibrium equation 
given in Eq. (5) can be solved for the increments 

of the state variables within the load increment, 
Note that since the left-hand side of the in- 

cremental equilibrium Eq. (5) depends on the 
solution variables of  e~ over the plastic regime, 
an iteration process with initial tangent stiffness is 
necessary or the tangent stiffness needs to be 

updated at each load increment. 

3. Design Sensitivity Analysis 

3.1 Design sensitivity analysis 
Since DSA computes the rate of changes in a 

response due to the changes in a design variable 
b, DSA is defined as determination of  the total 
variation of  the response function, ~'(~u~,b), with 
respect to the design variable as follows: 

Find ~ ' ~ : ~ b  (7) 

where it is assumed that the response function 

whose DSA is required can be expressed in terms 
of the design variables and the displacement field, 

which must satisfy the equitibriun~ Eq. (4). 

~u~= tu~ and *aJn,i: tT~ on '-Fr; 

e~j = T  ( U~:~m.j + ~uj;~x.,.). (8) 

The total design variations of strain and stress 
are given as 

~(3teo) = e o ( g  (c~tu)) + ~e~i(c~u), (9) 
~-~aij = ~'~du + ~cr~j ; 

where ~- and g: denote implicit and explicit 
design variations, respectively(Lee and Arora, 
1995). The design variation of the plastic strain 
given in Eq. (2) becomes 

3'el,--g'eS+ ~teS; g'efs='ef,~o~,g%~ �9 (11) 

Now in order to calculate g~u using DVM, 

total design variation of the virtual work gq. (4) 
is taken as 

-~- f g(~T~ 3"uMFr - f ~{"a~jee(6'u)J}"dV 

for VS~u~ U(~V) (12) 

based an the fact that g (S tu)  is kinematically 

admissible virtual displacement. Note that the 

design sensitivity equation derived by DVM of 
Eq. (12) has same operators as those in the 

linearized incremental equilibrium Eq. (5), How- 
ever, it is important to note that the left-hand side 
of the design sensitivity equation depends on the 

solution variables of  3ee.-t ~, 

3.2 Direct variation method 
DSA of an e!astoplastic structure has been 

presented using DVM(Vidal and Haber, 1993 ; 
Ohsaki and Arora, 1994; Ohsaki, 1997; Park and 
Choi, 1996; Tasy et al,, 1993). Let '3:~ be (he 
coordinates in the fixed reference domain with the 

volume r V and its boundary ~['(Phelan and 
Haber, 1989; Arora et al., 1992). Applying the 

transformation x,--* ~x,. to Eq. (4), we have 

/ / %je~j(S~u) 7 d V =  % ~ u J ~ d V  

f Te3 for VS~u,r UUV), 

3.3 Adjoint variable method 
Consider a response function defined in the 

unit volume and transformed into the reference 
domain as 

f l  rdV ~P=j~ G( m,b)J (13) 

To develop AVM, we define an augmented 
functional as 

t ) /'t e 

+ f tL ,  " d V  f f * T % u d / d F r  (14) J }iabtd �9 
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where kinematically admissible field ~u~, the 

so-called adjoint variable, is introduced and will 
be determined later. Using the variational princi- 

ple of DSA(Arora and Cardoso, 1992), we have 

f y 'dV  

f 8  T,.Yr)~U~']. r. (15) 

Since 3 L = 0 ,  the adjoint eqt, ation is given as 
follows: 

f 'i a,./e,,( g 'u) J~dV-- ?L,,, ,g 'u,YdV 

_[_ t ~ p t ~tlI r 

for V ~ u ~ :  U(V) (16) 

wheret  _ -, ~�9 ,,a,:~- C~s~ae~ and ~u~ ~ U ( V )  Solving 
Eq. (16) to adjoint displacement ~,u~, we can 

compute the design sensitivity coefficient of the 
response function of  Eq. (15) by substituting the 
adjoint displacement into Eq. (15). Note that the 

adjoinl variable eq. (16) has the same operators 
as those in the linearized incremental equilibrium 
Eq. (5). Since the right-hand side of Eq. (16) has 
unknown variable ~u,:, an iteration process is 

necessary or the tangent stiffness must to be 
updated at each load increment to solve it. 

4. Examples 

4.1 Analytical example : linear elastoplastic 
rod 

Consider a linear elastoplastic rod subjected to 

an axial load as shown in Fig. 2(Lee and Arora, 
1995). DSA of the tip displacement is illustrated 
analytic;ally, where the design variable is b = [ A ] ,  
i.e., the cross-sectional area. Using Dirac delta 
function, ~}(~e), the response functional can be 

given as 
I 

(17) 
0 

(i) When the ~oad tp  is in the elastic range (i. 

~ =x/L 
J= AL 

> ~ Jr =A 

Fig, 2 Linear eiastopiastic rod and its transforma- 
tion into the reference domain. 

e., ~/7<0), strain, equilibrium equation and tip 

displacement are given as 

L 

�9 ' " " ' I 
0 

'PL 
= tP6'ql (1) ;'z,~ (L) = EA- (18) 

DVM of sensitivity equation (12) and its solu- 

tion are given as 

1 

" = T  g ' u ' d  I{-~; Su,,(c~'u),,AL}d$= 
0 

1 

(I 

g'u (L) .... 'PL 3A 
E A  2 (19) 

Adjoint equation and adjoint variable of AVM 

can be evaluated from Eqs. (16) and (17) as 
follows: 

1 1 

E ~  ~~ ~ 1 

g tuAL}d$ ;  ~U_ NA_L~ (2o) 

where it is observed that the pseudo-load of the 
adjoint slructure is unit. Now the design variation 

of the response functional Eq. (17), is given from 

Eq. (15) as Follows: 

1 

f E t  t t l J L  g g  = - ~T-  a,~au,~d~c~A = - N - x  ~A. 
I 

0 

(21) 

Note that the design variation of the tip dis- 

placement given by DVM and AVM is the same 
as the direct design variation of the analytical 

solution of Eq. (18). 
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(ii) When the load 'P  is in the plastic range (i. 
e., t F > 0 ) ,  the equilibrium equation and its solu- 
tion by integration by parts are given as 

1 

E ~  
S {--ffr u,,8 u , ,AL  } d$-- tPSt u ( l ) 
0 

1 

0 

(22) 

~PL 1 1 

DVM of sensitivity Eq. (12) and its solution 

are given as 

0 

1 

E t  = - I {T'z- u,,( ~ u  ) ,,L SA } d~e 
0 

1 

0 

t 

_(•177 PL~A 
~ t u ( L ) - -  \ E  c ~ ]  A z (25) 

Since plastic strain is implicit in design, design 
sensitivity Eq. (16) of AVM and adjoint variable 
are given as follows: 

1 

1 

0 

1 

f{ E t u E gtu, ,AL)d~,  (26) 
o , * w 4 T i -  

t / 1  I \ L -  
~u = ~ -  +T~-K ) ~ - e .  (27) 

Thus the design variation of the response func- 

tional is given as 

1 

0 

t 

= - \ ~ -  TT/] A (28) 

which is identical to the design variation of  the 
analytical displacement of Eq. (23). Note that the 
design variation of  the tip displacement at load 

level t is evaluated without the aid of DSA of the 
response corresponding to the yield load (discon- 

tinuous point) in both DVM and AVM. This is 
an important observation because it shows that 
the sensitivity analysis at the yield point is not 

needed to calculate sensitivities in the plastic 
regime. 

4.2 Numer ica l  example  : three-bar  truss 

s tructure  

Numerical example is provided for an asym- 

metric three-bar truss structure subjected to a 
load P > P r  as shown in Fig. 3, where py denotes 
the critical load corresponding to the yield point 
for member 2. The problem is to find the design 
sensitivity of the x-displacement at node 4 due to 
the cross-sectional area variation of the member 

2, i.e., b=A2. The dimension and material prop- 

erties of  the problem are 

E = 100 GPa; Et = 10 (-;Pa; a t = 2 0 0  MPa; 
P = 9 0  kN; A P =  l0 N; a=60~ /3=30 ~ 
A~=A2=A~=I • 10-4m2; L = l m  

A1, A2, and A3 represent cross-sectional areas 
of members 1, 2, and 3, respectively. 

Figure 4 shows the load-displacement relation- 
ship and Fig. 5 shows the design sensitivity coeffi- 

cients of the x-displacement due to the design 
variation of A2. Member 2 yields first at load 
level around 34.6 kN and then members 3 and 1 
at loads around 44.2 kN and 76.6 kN, respective- 

| 

| 

| 

Fig. 3 

1 y 

P 

0) 

Asymmetric three-bar truss structure. 
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Design sensitivity of the x-displacement of 
node 1. 

ly. The accuracy of  the design sensitivity coeffi- 

cients evaluated by the developed method is 

compared with those by the central finite differ- 

ence method with 1% perturbat ion of b as given 

in Table  I. In the presentation of the results, R 

indicates the ratio of  the design sensitivity coeffi- 

cients predicted by the central  finite difference 

method (Au/Ab)  to those by AVM (du/db) as 

follows: 

A u / A b  o (29) R = - d ~ •  100(%). 
R =  100% means that the design sensitivity coeffi- 

cient predicted by AVM matches exactly with it 

evaluated by the central finite difference method. 

It can be observed that the design sensitivity 

coefficients arc in good agreement with those 

obtained using the overall central finite difference 

method. However, the central  finite difference 

gives inaccurate design sensitivity coefficients 

around the material t ransi t ion points as shown in 

Table  1. This is attributed to the errors in the 

T a b l e  1 Design sensitivity coeff• of x-displace- 
ment of member 1 and their comparison 
with central finite difference method. 

P(kN) u (m) 

30.0 0,0017 

34.0 0.0020 

34.5 0.0020 

35.O O.0020 

40.0 0.0026 

43,5 0,003I 

44.0 0.0031 

44.5 0.0033 

50.0 0.0O59 

55.0 0.0083 

60.0 0.0107 

65.O 0,0131 

70.0 0.0155 

75.0 0.0179 

76.O 0,0183 

76.5 0.0186 

77.0 0,0189 

80.0 0.0206 

85.5 0.0238 

90.0 0.0264 

du/db* Au/Ab 

--173.6680 

R ( % )  

,-10,0000 -~10,0000 100,00 

--11.3333 --11.3334 100.00 

--11,5000 --14,5050 126,13 

--24,0749 ..... 23,7040 98,46 

--24.7994 --25.8533 104.25 

--25.2748 --24.3588 96.38 

--25.3578 ..... 30,4873 120,23 

--101.7359 --102.1525 100.41 

- -  114.2084 ..... 118,4113 103,68 

--125.6501 --126.8387 100.95 

-137,0816 --141.8282 103.46 

--148.5233 --148.0698 99.69 

--160.0316 ...... 158,7037 99,17 

--I71.3581 --173.5995 I01,31 

--172.7173 99.45 

--174.7934 ..... 183.3698 104.91 

--212.7827 --212.6301 99.93 

--222.7827 ---226.6304 99.93 

...... 241.1161 --233.1849 96.71 

--256.1161 --248.1854 96.90 

* Sensitivity coefficients computed by AVM 

finite difference calculations due to the disconti- 

nuities at the t ransi t ion points. The developed 

AVM provides however quite reasonable design 

sensitivity coefficient for all load ranges as shown 

in Fig. 5. 

5. Discussion and Concluding 
Remarks 

Adjoin t  variable method for DSA ofelastoplas-  

tic structural problem is developed and  demon-  

strated. The adjoint  equat ion is obtained by tak~ 

ing implicit design variat ion of the augmented 

functional  defined. In this way, discontinuit ies of 
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the design variations at the material transition 
points do not affect DSA at other points, i. e., no 
special treatment is needed to overcome disconti- 
nuities. Analytical and numerical examples are 
used to demonstrate the developed AVM proce- 
dure and gain insights for their numerical imple- 
mentations. It is observed that an iteration proce- 

dure in AVM is necessary to compute sensitivity 
expressions or the tangential stiffness matrix 
needs to be updated at each load increment. 
Moreover, it is important to note that AVM can 
be implemented for elastoplastic structural prob- 
lems as easily as DVM. Thus when the dimen- 
sions of design variables are larger than the 
number of response functions whose design sensi- 
tivity analysis is desired, the developed AVM is 
more efficient than DVM. 
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